Extensions 1→N→G→Q→1 with N=C23 and Q=S3xC7

Direct product G=NxQ with N=C23 and Q=S3xC7
dρLabelID
S3xC22xC14168S3xC2^2xC14336,226

Semidirect products G=N:Q with N=C23 and Q=S3xC7
extensionφ:Q→Aut NdρLabelID
C23:(S3xC7) = S3xF8φ: S3xC7/S3C7 ⊆ Aut C232414+C2^3:(S3xC7)336,211
C23:2(S3xC7) = C14xS4φ: S3xC7/C7S3 ⊆ Aut C23423C2^3:2(S3xC7)336,214
C23:3(S3xC7) = C14xC3:D4φ: S3xC7/C21C2 ⊆ Aut C23168C2^3:3(S3xC7)336,193

Non-split extensions G=N.Q with N=C23 and Q=S3xC7
extensionφ:Q→Aut NdρLabelID
C23.(S3xC7) = C7xA4:C4φ: S3xC7/C7S3 ⊆ Aut C23843C2^3.(S3xC7)336,117
C23.2(S3xC7) = C7xC6.D4φ: S3xC7/C21C2 ⊆ Aut C23168C2^3.2(S3xC7)336,89
C23.3(S3xC7) = Dic3xC2xC14central extension (φ=1)336C2^3.3(S3xC7)336,192

׿
x
:
Z
F
o
wr
Q
<